Dynamics and Fate of Beneficial Mutations Under Lineage Contamination by Linked Deleterious Mutations.
نویسندگان
چکیده
Beneficial mutations drive adaptive evolution, yet their selective advantage does not ensure their fixation. Haldane's application of single-type branching process theory showed that genetic drift alone could cause the extinction of newly arising beneficial mutations with high probability. With linkage, deleterious mutations will affect the dynamics of beneficial mutations and might further increase their extinction probability. Here, we model the lineage dynamics of a newly arising beneficial mutation as a multitype branching process. Our approach accounts for the combined effects of drift and the stochastic accumulation of linked deleterious mutations, which we call lineage contamination We first study the lineage-contamination phenomenon in isolation, deriving dynamics and survival probabilities (the complement of extinction probabilities) of beneficial lineages. We find that survival probability is zero when [Formula: see text] where U is deleterious mutation rate and [Formula: see text] is the selective advantage of the beneficial mutation in question, and is otherwise depressed below classical predictions by a factor bounded from below by [Formula: see text] We then put the lineage contamination phenomenon into the context of an evolving population by incorporating the effects of background selection. We find that, under the combined effects of lineage contamination and background selection, ensemble survival probability is never zero but is depressed below classical predictions by a factor bounded from below by [Formula: see text] where [Formula: see text] is mean selective advantage of beneficial mutations, and [Formula: see text] This factor, and other bounds derived from it, are independent of the fitness effects of deleterious mutations. At high enough mutation rates, lineage contamination can depress fixation probabilities to values that approach zero. This fact suggests that high mutation rates can, perhaps paradoxically, (1) alleviate competition among beneficial mutations, or (2) potentially even shut down the adaptive process. We derive critical mutation rates above which these two events become likely.
منابع مشابه
Obstruction of adaptation in diploids by recessive, strongly deleterious alleles.
Recessive deleterious mutations are common, causing many genetic disorders in humans and producing inbreeding depression in the majority of sexually reproducing diploids. The abundance of recessive deleterious mutations in natural populations suggests they are likely to be present on a chromosome when a new adaptive mutation occurs, yet the dynamics of recessive deleterious hitchhikers and thei...
متن کاملDeleterious passengers in adapting populations.
Most new mutations are deleterious and are eventually eliminated by natural selection. But in an adapting population, the rapid amplification of beneficial mutations can hinder the removal of deleterious variants in nearby regions of the genome, altering the patterns of sequence evolution. Here, we analyze the interactions between beneficial "driver" mutations and linked deleterious "passengers...
متن کاملHitchhiking and epistasis give rise to cohort dynamics in adapting populations.
Beneficial mutations are the driving force of adaptive evolution. In asexual populations, the identification of beneficial alleles is confounded by the presence of genetically linked hitchhiker mutations. Parallel evolution experiments enable the recognition of common targets of selection; yet these targets are inherently enriched for genes of large target size and mutations of large effect. A ...
متن کاملComputational approach towards identification of pathogenic missense mutations in AMELX gene and their possible association with amelogenesis imperfecta
Amelogenin gene (AMEL-X) encodes an enamel protein called amelogenin, which plays a vital role in tooth development. Any mutations in this gene or the associated pathway lead to developmental abnormalities of the tooth. The present study aims to analyze functional missense mutations in AMEL-X genes and derive an association with amelogenesis imperfecta. The information on miss...
متن کاملTitle : Competition between continuously evolving lineages in asexual populations
In an asexual population, the fate of a beneficial mutation depends on how its lineage competes against other mutant lineages in the population. With high beneficial mutation rates or large population sizes, competition between contending mutations is strong, and successful lineages can accumulate multiple mutations before any single one achieves fixation. Most current theory about asexual popu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 205 3 شماره
صفحات -
تاریخ انتشار 2017